
Environments Closures Refinement Mapping to Implementations

Environments

Thomas Sewell
UNSW

Term 3 2024

1

Environments Closures Refinement Mapping to Implementations

Where we’re at

We refined the abstract M-Machine to a C-Machine, with
explicit stacks:

s ≻ e s ≺ v

Function application is still executed via substitution:

(Apply ⟨⟨f .x . e⟩⟩ □) ▷ s ≺ v 7→C s ≻ e[x := v , f := (Fun (f .x .e))]

We’re going to extend our C-Machine to replace substitutions
with an environment, giving us a new E-Machine

2

Environments Closures Refinement Mapping to Implementations

Environments

Definition

An environment is a context containing the values of variables.

It is like the states of TinyImp, except the value of a variable never
changes.

• Env

η Env

x = v , η Env

η(x) denotes the leftmost value bound to to x in η.

Let’s change our machine states to include an environment:

s | η ≻ e s | η ≺ v

3

Environments Closures Refinement Mapping to Implementations

First Attempt

First, we’ll add a rule for consulting the environment if we
encounter a free variable:

s | η ≻ x 7→E s | η ≺ η(x)

Then, we just need to handle function application.

One broken attempt:

(Apply ⟨⟨f .x . e⟩⟩ □) ▷ s | η ≺ v 7→E s | (x = v , f = ⟨⟨f .x . e⟩⟩, η) ≻ e

We don’t know when to remove the variables again!

4

Environments Closures Refinement Mapping to Implementations

Second Attempt
We will extend our stacks to allow us to save the old environment
to it.

η Env s Stack

η ▷ s Stack

When we call a function, we save the environment to the stack.

(Apply ⟨⟨f .x . e⟩⟩ □) ▷ s | η ≺ v 7→E η ▷ s | (x = v , f = ⟨⟨f .x . e⟩⟩, η) ≻ e

When the function returns, we restore the old environment,
clearing out the new bindings:

η ▷ s | η′ ≺ v 7→E s | η ≺ v

This attempt is also broken (we’ll see why soon)

5

Environments Closures Refinement Mapping to Implementations

Simple Example

◦ | • ≻ (Ap (Fun (f .x . (Plus x (N 1)))) (N 3))
(Ap □ (N 3)) ▷ ◦ | • ≻ (Fun (f .x . (Plus x (N 1))))
(Ap □ (N 3)) ▷ ◦ | • ≺ ⟨⟨f .x . (Plus x (N 1))⟩⟩
(Ap ⟨⟨· · ·⟩⟩ □) ▷ ◦ | • ≻ (N 3)
(Ap ⟨⟨· · ·⟩⟩ □) ▷ ◦ | • ≺ 3

• ▷ ◦ | x = 3, f = ⟨⟨· · ·⟩⟩, • ≻ (Plus x (N 1))
(Plus □ (N 1)) ▷ • ▷ ◦ | x = 3, f = ⟨⟨· · ·⟩⟩, • ≻ x
(Plus □ (N 1)) ▷ • ▷ ◦ | x = 3, f = ⟨⟨· · ·⟩⟩, • ≺ 3

(Plus 3 □) ▷ • ▷ ◦ | x = 3, f = ⟨⟨· · ·⟩⟩, • ≻ (N 1)
(Plus 3 □) ▷ • ▷ ◦ | x = 3, f = ⟨⟨· · ·⟩⟩, • ≺ 1

• ▷ ◦ | x = 3, f = ⟨⟨· · ·⟩⟩, • ≺ 4
◦ | • ≺ 4

Seems to work for basic examples, but is there some way to break it?

6

Environments Closures Refinement Mapping to Implementations

Closure Capture
◦ | • ≻ (Ap (Ap (Fun (f .x . (Fun (g .y . x)))) (N 3)) (N 4))

7→E (Ap □ (N 4)) ▷ ◦ | • ≻ (Ap (Fun (f .x . (Fun (g .y . x)))) (N 3))

7→E (Ap □ (N 3)) ▷ (Ap □ (N 4)) ▷ ◦ | • ≻ (Fun (f .x . (Fun (g .y . x))))

7→E (Ap □ (N 3)) ▷ (Ap □ (N 4)) ▷ ◦ | • ≺ ⟨⟨f .x . (Fun (g .y . x))⟩⟩
7→E (Ap ⟨⟨f · · ·⟩⟩ □) ▷ (Ap □ (N 4)) ▷ ◦ | • ≻ (N 3)

7→E (Ap ⟨⟨f · · ·⟩⟩ □) ▷ (Ap □ (N 4)) ▷ ◦ | • ≺ 3

7→E • ▷ (Ap □ (N 4)) ▷ ◦ | x = 3, f = ⟨⟨f · · ·⟩⟩, • ≻ (Fun (g .y . x))

7→E • ▷ (Ap □ (N 4)) ▷ ◦ | x = 3, f = ⟨⟨f · · ·⟩⟩, • ≺ ⟨⟨g .y . x⟩⟩
7→E (Ap □ (N 4)) ▷ ◦ | • ≺ ⟨⟨g .y . x⟩⟩
7→E (Ap ⟨⟨g .y . x⟩⟩ □) ▷ ◦ | • ≻ (N 4)

7→E (Ap ⟨⟨g .y . x⟩⟩ □) ▷ ◦ | • ≺ 4

7→E • ▷ ◦ | y = 4, g = ⟨⟨g .y . x⟩⟩, • ≻ x

Oh no! We’re stuck!

7

Environments Closures Refinement Mapping to Implementations

Something went wrong!

When we return functions, the function’s body escapes the scope
of bound variables from where it as defined:

(let x = 3 in recfun f y = x + y) 5

The function value ⟨⟨f .y . x + y⟩⟩, when it is applied, does not
“remember” that x = 3.

Solution: Store the environment inside the function value!

s | η ≻ (Recfun (f .x . e)) 7→E s | η ≺ ⟨⟨η, f .x . e⟩⟩

This type of function value is called a closure.

8

Environments Closures Refinement Mapping to Implementations

(Apply ⟨⟨η′, f .x . e⟩⟩ □) ▷ s | η ≺ v 7→E η ▷ s | (x = v , f = ⟨⟨f .x . e⟩⟩, η′) ≻ e

Store the
old env. in
the stack

Retrieve the new
env. from the closure

9

Environments Closures Refinement Mapping to Implementations

◦ | • ≻ (Ap (Ap (Fun (f .x . (Fun (g .y . x)))) (N 3)) (N 4))

(Ap □ (N 4)) ▷ ◦ | • ≻ (Ap (Fun (f .x . (Fun (g .y . x)))) (N 3))

(Ap □ (N 3)) ▷ (Ap □ (N 4)) ▷ ◦ | • ≻ (Fun (f .x . (Fun (g .y . x))))

(Ap □ (N 3)) ▷ (Ap □ (N 4)) ▷ ◦ | • ≺ ⟨⟨•, f .x . (Fun (g .y . x))⟩⟩
(Ap ⟨⟨•, f · · ·⟩⟩ □) ▷ (Ap □ (N 4)) ▷ ◦ | • ≻ (N 3)

(Ap ⟨⟨•, f · · ·⟩⟩ □) ▷ (Ap □ (N 4)) ▷ ◦ | • ≺ 3

• ▷ (Ap □ (N 4)) ▷ ◦ | x = 3, f = ⟨⟨f · · ·⟩⟩, • ≻ (Fun (g .y . x))

• ▷ (Ap □ (N 4)) ▷ ◦ | x = 3, f = ⟨⟨f · · ·⟩⟩, • ≺ ⟨⟨(x = 3, f = · · · , •), g .y . x⟩⟩
(Ap □ (N 4)) ▷ ◦ | • ≺ ⟨⟨(x = 3, f = · · · , •), g .y . x⟩⟩
(Ap ⟨⟨(x = 3, f = · · · , •), g .y . x⟩⟩ □) ▷ ◦ | • ≻ (N 4)

(Ap ⟨⟨(x = 3, f = · · · , •), g .y . x⟩⟩ □) ▷ ◦ | • ≺ 4

• ▷ ◦ | y = 4, g = ⟨⟨g .y . x⟩⟩, x = 3, f = · · · , • ≻ x

• ▷ ◦ | y = 4, g = ⟨⟨g .y . x⟩⟩, x = 3, f = · · · , • ≺ 3

◦ | • ≺ 3

10

Environments Closures Refinement Mapping to Implementations

Refinement

We already sketched a proof that each C-machine execution
has a corresponding M-machine execution (refinement).

This means any functional correctness (not security or cost)
property we prove about all M-machine executions of a
program apply just as well to any C-machine executions of the
same program.

Now we want to prove that each E-machine execution has a
corresponding C-machine execution (and therefore an
M-machine execution).

11

Environments Closures Refinement Mapping to Implementations

Ingredients for Refinement

Once again, we want an abstraction function A that converts
E-machine states to C-machine states, such that:

Each initial state in the E-machine is mapped to an initial
state in the C-Machine.

Each final state in the E-machine is mapped to a final state in
the C-Machine.

For each E-machine transition, either there is a corresponding
C-Machine transition, or the two E-machine states map to the
same C-machine state.

12

Environments Closures Refinement Mapping to Implementations

How to define A?

Our abstraction function A applies the environment η as a
substitution to the current expression, and to the stack,
starting at the left.

If any environment is encountered in the stack, switch to
substituting with that environment instead.

E-Machine values are converted to C-Machine values merely
by applying the environment inside closures as a substitution
to the expression inside the closure.

With such a function definition, it is trivial to prove that each
E-Machine transition has a corresponding transition in the
C-Machine, as it is 1:1.

Except!

There is one rule which is not 1:1. Which one?

13

Environments Closures Refinement Mapping to Implementations

Semantics Refinement to Program Refinement
The C-Machine and M-machine on these slides have been
presented in a very abstract way.

However these program transformations have taken us much closer
to an implementation:

The states (with □ gaps) of the C-Machine are the nodes of
the control-flow graph of the program.

The environments of our E-machine become concrete objects:
Stack frames
Closure objects (also called thunks)

The next step is to adjust the program to make this semantics
explicit.

And we’ve learned how to prove that our transformations are
correct, whether we are adjusting the semantics or the program.

Most compilers do such program-to-program transformations of
this kind, but there is no canonical set of them.

14

Environments Closures Refinement Mapping to Implementations

An Alternative: A Normalisation
Here is an alternative approach to the C-Machine construction.

First, put the program in A Normal form:

2 + (3 ∗ (4 + x))

=⇒

let v1 = 4 + x in let v2 = 3 + v1 in 2 + v2

We can prove this transformation is correct, for instance by
refinement.

The need for fresh names v1, v2, . . . is a nuisance.

We can now simplify the use of □ in our C-Machine. How?15

	Environments
	

	Closures
	

	Refinement
	

	Mapping to Implementations

